Home
Class 12
MATHS
int x cosec x Cotx dx =...

`int ` x cosec x Cotx dx =

A

xcosecx - log `| tan ""(x)/(2)| + c`

B

`-`xcosecx + log `| tan ""(x)/(2)| + c`

C

xcosecx - 2log `| tan ""(x)/(2)| + c`

D

xCotx + log `|tan ""(x)/(2)|+ c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int sec x "cosec" x dx=

int x sec x tan x dx=

int " cosec"^(m) x cot x dx =

int e^(-x) cosecx (Cotx + 1) dx =

Obtain reduction formula for I_(n) =int cosec ^(n) x dx, n being a positive integer, nge 2 and deduce the value of int cosec ^(5) x dx.

int sec^(2) " x cosec"^(4) x dx = - (1)/(3) cot^(3) x + k tan x - 2 cot x + c rArr k =

int sec ^(2) x cosec ^(2) x dx on I subR\\ ({n pi : n in Z} uu{(2n +1) (pi)/(2), n in Z}).