Home
Class 12
MATHS
int (x tan^(-1)x)/(sqrt(1 + x^(2))) d x...

`int (x tan^(-1)x)/(sqrt(1 + x^(2))) ` d x=

A

`sqrt(1 +x^(2)) tan^(-1) " x- log "(x + sqrt(1 + x^(2))) + c`

B

`sqrt(1 +x^(2)) tan^(-1) " x + log "(x + sqrt(1 + x^(2))) + c`

C

` (tan^(-1)x)/(sqrt(1 +x^(2))) " + log "(x + sqrt(1 + x^(2))) + c`

D

` (tan^(-1)x)/(sqrt(1 +x^(2))) "- log "(x + sqrt(1 + x^(2))) + c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (x+Sin^(-1)x)/(sqrt(1-x^(2)))=dx

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

int (sqrt(1 -x^(2)) sin^(-1) x + x)/(sqrt(1 - x^(2))) dx =

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

int (x)/(sqrt(x^(2)+1))dx=

d/(dx) ("Tan"^(-1) (x)/(sqrt(a^2 - x^2))) =

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

(d)/(dx) {Tan ^(-1)( (x)/(1 - sqrt(1 + x ^(2))))}=

If int (x sqrt(x) -1)/(sqrt(x) -1) dx = ax^(2) + bx^(3//2) + cx + d then ascending order of a, b, c, is