A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
AAKASH SERIES-INDEFINITE INTEGRALS -EXERCISE -II
- int ((2-sin 2x)/(1-cos 2x))e^(x)dx=
Text Solution
|
- int (3-x^(2))/(1-2x+x^(2))e^(x)dx=e^(x)f(x)+c rArr f(x)=
Text Solution
|
- int e^(x).(x^(3) + x + 1)/((1 + x^(2))^(3//2)) dx =
Text Solution
|
- int [ sin(log x)+ cos (log x ) ] dx =
Text Solution
|
- int [ (1)/(log x) - (1)/((log x)^(2)) ] dx =
Text Solution
|
- int [ (log x - 1)/(1 + (log x)^(2)) ]^(2) dx =
Text Solution
|
- int e^(x) [ "In " x + (1)/(x^(2)) ] dx =
Text Solution
|
- int [ log(log x) + (log x )^(-2) ] dx =
Text Solution
|
- int e^(Tan^(-1))((1+x+x^(2))/(1+x^(2)))dx=
Text Solution
|
- int e^(sin^(-1)x) { 1 + (x)/(sqrt(1 - x^(2))) } dx =
Text Solution
|
- int (x + sin x)/(1 + cosx ) dx =
Text Solution
|
- int(x-sinx)/(1+cosx)dx= tan((x)/(2))+plog|sec((x)/(2))|+c rArr p=
Text Solution
|
- int (("cosx")/(x) - "sinx.logx") dx =
Text Solution
|
- int (1 + x -x^(-1)) e^(x + x^(-1)) dx =
Text Solution
|
- int e^(-5x).cos 12 x dx =
Text Solution
|
- int 3^(x) cos 5x dx =
Text Solution
|
- Evaluate the integerals. int cos (log x) dx on (0,oo).
Text Solution
|
- If I(n)= int(sin nx)/(cos x)dx, then I(n)=
Text Solution
|
- If I(m.n) = int sin^(m) x cos^(n) xdx then I(5,4) =
Text Solution
|
- If I(n) = int (e^(ex))/(x^(n)) " dx then " I(n) - (a)/(n-1) .I(n-1) =
Text Solution
|