Home
Class 12
MATHS
int e^(Tan^(-1))((1+x+x^(2))/(1+x^(2)))d...

`int e^(Tan^(-1))((1+x+x^(2))/(1+x^(2)))dx=`

A

`x^(2) e^(tan^(-1)x ) + c`

B

`x e^(tan^(-1)x) + c`

C

`e^(tan^(-1)x) + c`

D

`(1)/(2) x e^(tan^(-1)) + c `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

Evaluate the integerals. int e ^(x) (tan ^(-1)x + (1)/(1+ x ^(2)))dx, x in R.

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

int Tan^(-1)((2x)/(1-x^(2)))dx=

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=

int (x^(49)Tan^(-1) (x^(50)))/((1+x^(100)))dx=k (Tan^(-1)(x^(50))^(2)+c rArr k=

int_(0)^(1)Tan^(-1)[(2x-1)/(1+x-x^(2))]dx=