Home
Class 12
MATHS
If I(n) = int (log x)^(n) dx then I(6) ...

If `I_(n) = int (log x)^(n)` dx then `I_(6) + 6I_(5)` =

A

`x(logx)^(5) + c`

B

`- x(log x)^(5)+ c`

C

`x (log x)^(6) + c`

D

`- x(log x)^(6)+ c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(n) = int cos^(n) x dx , then 6I_(6) -5I_(4) =

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=

If I_(n) = int Sec^(n) x dx then I_(8) - (6)/(7) I_(6) =

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

AAKASH SERIES-INDEFINITE INTEGRALS -EXERCISE -II
  1. If I(m.n) = int sin^(m) x cos^(n) xdx then I(5,4) =

    Text Solution

    |

  2. If I(n) = int (e^(ex))/(x^(n)) " dx then " I(n) - (a)/(n-1) .I(n-1) =

    Text Solution

    |

  3. If I(n) = int (log x)^(n) dx then I(6) + 6I(5) =

    Text Solution

    |

  4. Statement-I: int (dx)/(sqrt(9 -x^(2))) = sin^(-1) ((x)/(3)) + c Statem...

    Text Solution

    |

  5. S(1) : int (x^(5))/(x^(2) + 1) dx = (x^(4))/(4) - (x^(2))/(4) - (x^(2)...

    Text Solution

    |

  6. If the curve f(x) = int e^(x) dx passing through (0,1) then the ascend...

    Text Solution

    |

  7. If int (1)/(sqrt(x^(2) + x+ 1)) dx = a sinh^(-1) (bx + c ) + d then ...

    Text Solution

    |

  8. If int (dx)/(cos^(3) x sqrt(2 sin 2x)) = (tan x)^(A) + C(tan x)^(B) + ...

    Text Solution

    |

  9. Observe the following statements Assertion (A) : int((x^(2) -1)/(x^(...

    Text Solution

    |

  10. Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2)...

    Text Solution

    |

  11. The anti derivativ of f(x) = 1 +2^(x) log 2 is g(x) and the curve y =...

    Text Solution

    |

  12. If int (1)/(cos^(6) x + sin^(6) x) dx = tan^(-1) f(x) + C then f(x) =

    Text Solution

    |

  13. int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ log (g(x))-log(f(x))]dx=

    Text Solution

    |

  14. If int x^(3)e^(5x)dx-(e^(5x))/(5^(4))(f(x))+0(3) then f(x)=

    Text Solution

    |

  15. int (x)/((x^(2)+2x+2)^(2))dx=

    Text Solution

    |

  16. If int log (a^(2)+x^(2))dx=h(x)+c, then h(x)=

    Text Solution

    |

  17. For x gt 0, if int(logx)^(5)dx=x(A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D...

    Text Solution

    |

  18. int (3 sinx - 5 cos x )/(7 cos x + 2 sin x ) dx =

    Text Solution

    |

  19. int (1 - x^(7))/(x (1 + x^(7)))" dx = a l n" |x| + bln |x^(7) + 1 |+ c...

    Text Solution

    |

  20. int (6x^(2) - 17 x - 5)/((x - 3)(x - 2)^(2)) dx =

    Text Solution

    |