Home
Class 12
MATHS
If the curve f(x) = int e^(x) dx passing...

If the curve f(x) = `int e^(x)` dx passing through (0,1) then the ascending order of f(0), f(1), f(-1), f(2) is

A

f(0), f(1),f(-1),f(2)

B

f(-1), f(0), f(1),f(2)

C

f(2),f(1),f(0),f(-1)

D

f(1),f(0),f(-1),f(2)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

{:(1.if F (X) = (1)/(x) then f'(1) =A, 2.If f (x) = (x+1)/(x+3) then f '(-1) =B),(3.If f(x)=x^(2)then f'(1)=C,4. If f(x)=logx then f'(3)=D):} The ascending order of A,B,C ,D is

Let f(x)= int e^(x)(x-1)(x-2)dx . Then f decreases in the interveal

Let f is a real valued function defined on the interval (-1,1) such that e^(-x)f(x) = 2 + int_0^x sqrt(t^4 + 1 dt) AA x in (-1,1) and f^(-1) is the inverse of f. If (f^(-1)(2)) = 1/k then k is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If f:A rarrR is defined as f(x)=x^(3)+1 and A={1, 2, -1, -2, 0} then the range of f is

AAKASH SERIES-INDEFINITE INTEGRALS -EXERCISE -II
  1. If I(n) = int (e^(ex))/(x^(n)) " dx then " I(n) - (a)/(n-1) .I(n-1) =

    Text Solution

    |

  2. If I(n) = int (log x)^(n) dx then I(6) + 6I(5) =

    Text Solution

    |

  3. Statement-I: int (dx)/(sqrt(9 -x^(2))) = sin^(-1) ((x)/(3)) + c Statem...

    Text Solution

    |

  4. S(1) : int (x^(5))/(x^(2) + 1) dx = (x^(4))/(4) - (x^(2))/(4) - (x^(2)...

    Text Solution

    |

  5. If the curve f(x) = int e^(x) dx passing through (0,1) then the ascend...

    Text Solution

    |

  6. If int (1)/(sqrt(x^(2) + x+ 1)) dx = a sinh^(-1) (bx + c ) + d then ...

    Text Solution

    |

  7. If int (dx)/(cos^(3) x sqrt(2 sin 2x)) = (tan x)^(A) + C(tan x)^(B) + ...

    Text Solution

    |

  8. Observe the following statements Assertion (A) : int((x^(2) -1)/(x^(...

    Text Solution

    |

  9. Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2)...

    Text Solution

    |

  10. The anti derivativ of f(x) = 1 +2^(x) log 2 is g(x) and the curve y =...

    Text Solution

    |

  11. If int (1)/(cos^(6) x + sin^(6) x) dx = tan^(-1) f(x) + C then f(x) =

    Text Solution

    |

  12. int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ log (g(x))-log(f(x))]dx=

    Text Solution

    |

  13. If int x^(3)e^(5x)dx-(e^(5x))/(5^(4))(f(x))+0(3) then f(x)=

    Text Solution

    |

  14. int (x)/((x^(2)+2x+2)^(2))dx=

    Text Solution

    |

  15. If int log (a^(2)+x^(2))dx=h(x)+c, then h(x)=

    Text Solution

    |

  16. For x gt 0, if int(logx)^(5)dx=x(A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D...

    Text Solution

    |

  17. int (3 sinx - 5 cos x )/(7 cos x + 2 sin x ) dx =

    Text Solution

    |

  18. int (1 - x^(7))/(x (1 + x^(7)))" dx = a l n" |x| + bln |x^(7) + 1 |+ c...

    Text Solution

    |

  19. int (6x^(2) - 17 x - 5)/((x - 3)(x - 2)^(2)) dx =

    Text Solution

    |

  20. If int e^(2x) f^(1) (x) dx = g (x), then int (e)^(2x) f^(1) (x) + e^(2...

    Text Solution

    |