Home
Class 12
MATHS
int (1)/((e^(x) - e^(-x))^(2)) dx =...

`int (1)/((e^(x) - e^(-x))^(2)) ` dx =

A

`-(1)/(4)` tan hx + C

B

`-(1)/(2)` cot hx + C

C

`- (1)/(2) ` tan hx + C

D

`-(1)/(4)` cot hx + C

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((e^(x)+e^(-x))^(2))=

int(1)/(e^(x)+e^(-x))dx

int (1)/((e^(x)-1)^(2))dx=

int (1)/(e^(x)+2e^(-x)-3)dx=

int (1)/((1+e^(x))(1+e^(-x))) dx=

int (e^(x))/((2e^(x) -3)^(2)) dx =

Evalute the following integrals int (e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=