Home
Class 12
MATHS
int (1 + tan^(2) x)/(1 -tan^(2) x) dx =...

`int (1 + tan^(2) x)/(1 -tan^(2) x) ` dx =

A

`(sin 2x)/(2) + ` C

B

`- (1)/(2) ` sin 2 x + C

C

`(1)/(2) ` log | sec 2 x + tan 2 x + C

D

`(2)/(3)` log | sec x | + C

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

int (tanx)/(1+tan^(2)x)dx=

int (1- tan x//2)/(1+ tan x//2)dx=

int e^(x) (tan x tan^(2) x ) dx =

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

int sec^(2) x tan^(2) x dx=

int (1+tan^(2)x + tan^(4)x+tan^6 x)dx=

int sin (tan^(-1) x) dx =