Home
Class 12
MATHS
int (e^(x))/((2e^(x) -3)^(2)) dx =...

`int (e^(x))/((2e^(x) -3)^(2)) ` dx =

A

`(1)/(2 (2e^(x) -3))` + C

B

`- (1)/(2(2e^(x) - 3)) + C `

C

`- (1)/((2e^(x) - 3)) + C `

D

`(1)/(2(2e^(x)+ 3)) + C `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int (e^(x))/(2e^(2x) + 3e^(x)-2) dx

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=

int (1)/((e^(x) - e^(-x))^(2)) dx =

int (e^(x))/(e^(x//2)-1)dx=

int(e^(x))/(sqrt(e^(2x)-3e^(x)+5))dx=

int (1)/((e^(x)-1)^(2))dx=

int(dx)/((e^(x)+e^(-x))^(2))=

int (x.e^(x))/((2 + x)^(3)) dx =

int e^(x)((x+2)/(x+3)^(2))dx

int (x e^(x))/((x+1)^(2))=dx