Home
Class 12
MATHS
int sec^(m) x* tan x dx=...

`int sec^(m) x* tan x dx=`

A

`(1)/(m)sec^(m)` x + c

B

`- (1)/(m) sec^(m) ` x + C

C

`(1)/(m) tan^(m)` x + C

D

`(1)/(m + 1).sec^(m+ 1) x + C `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int sec^(2) x tan^(2) x dx=

int x sec x tan x dx=

int sec x//3 tan x//3 dx

int sec^(5)x dx.

int sec^(4)x dx=

int (1)/(sec x+ tan x)dx=

int sec^(2)5x dx=

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =