Home
Class 12
MATHS
int (sec^(2)x)/(log (tanx)^(tanx))dx=...

`int (sec^(2)x)/(log (tanx)^(tanx))dx=`

A

log | tan x|+ C

B

log |log (tan x) |+ C

C

`(1)/(log (tan x)) + C `

D

`(tan x)/(log | tan x|) + C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (sec^(2)x)/(3+4tanx)dx=

int (sec^(2)x)/(sqrt(tan^(2)x-2tanx+5))dx=

Evaluate the following integrals. int(sec^(2)x)/((1+tanx))dx

Evalute the following integrals int ("sec x cos ecx")/(log (tan x)) dx

int (1-tanx)/(1+tan x)dx=

int_(0)^(pi//2)log(tanx)dx=

Evaluate the following integrals. int(secx)/((secx+tanx)^(n))dx

inte^(x)((sec^(2)x+tanx-cotx)/(sinx))dx=

int (tanx)/(1+tan^(2)x)dx=

(d)/(dx) {log ((x )/(e ^(tanx)))}=