Home
Class 12
MATHS
int (x^(2) tan^(-1)(x^(3)))/( 1 + x^(6))...

`int (x^(2) tan^(-1)(x^(3)))/( 1 + x^(6)) ` dx =

A

`(1)/(3) (tan^(-1)x)^(3) + C `

B

`(1)/(6) (tan^(-1) x^(3))^(2)` + C

C

`(1)/(3) ( tan^(-1) x^(2))^(3) + C `

D

`(1)/(3) (tan^(-1) x^(3))^(3)` + C

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) ((tan^(-1)x)^(3))/(1+x^(2))dx=

int (x^(49)Tan^(-1) (x^(50)))/((1+x^(100)))dx=k (Tan^(-1)(x^(50))^(2)+c rArr k=

int (x^(8))/(x^(6) + 1) dx =

If inte^(-x)tan^(-1)(e^(x))dx

int x Tan^(-1) x dx=

If y = tan ^(-1) ((2x )/( 1 -x ^(2))) + tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))- tan ^(-1) ((4x - 4x ^(3))/( 1 - 6x + x ^(4))), then show that (dy)/(dx) = (1)/(1 + x ^(2)).

Evaluate the integerals. int e ^(x) (tan ^(-1)x + (1)/(1+ x ^(2)))dx, x in R.