Home
Class 12
MATHS
If int (2^(x))/(1 - 4^(x)) dx = K log |...

If `int (2^(x))/(1 - 4^(x)) ` dx = K log `|(1 + 2^(x))/(1 -2^(x))| ` + C then K =

A

log 2

B

log 4

C

`(1)/(log 2)`

D

`(1)/(log 4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (2)/(x [1 + (log x)^(2)]) dx =

If int(2^(x))/(sqrt(1-4^(x)))dx=K Sin^(-1)(2^(x))+c , then K=

int x^(x) ( 1 + log x ) dx =

int (1)/(x (2 +3 log x )) dx =

If int (sec^(2) x)/(3 + 4 tan x) dx = K log | 3 + 4 tan x | + C then 1/K =

int (x^(2)+1)/(x^(4)+x^(2)+1)dx=

If int (2^(x) 3^(x))/(5^(2x). 7^(x)) dx = (1)/(k) ((2^(x).3^(x))/(5^(2x).7^(x))) + c then k =

int x^(4)(1+ log x) dx =

int (log x-1)/((log x)^(2))dx=