Home
Class 12
MATHS
int (1)/(e^(x)+2e^(-x)-3)dx=...

`int (1)/(e^(x)+2e^(-x)-3)dx=`

A

`log |(e^(x) - 1)/(e^(x) + 2)| + c`

B

`log |(e^(x) +1)/(e^(x)-2)| ` + c

C

`log |(e^(x) +1)/(e^(x) +2)| + c`

D

`log |(e^(x) + 1)/(2) | + c `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int(1)/(e^(x)+e^(-x))dx

int (1)/((e^(x) - e^(-x))^(2)) dx =

int (1)/((e^(x)-1)^(2))dx=

Evaluate the integerals. int (dx )/(e ^(x) +e^(2x))

int (e^(x))/(e^(x//2)-1)dx=

int (1)/((1+e^(x))(1+e^(-x))) dx=

int (e^(x))/(e^(2x)+2e^(x)+5)dx=

int(dx)/((e^(x)+e^(-x))^(2))=

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=