Home
Class 12
MATHS
If int e^(x).2^(3 log(2)x) dx = e^(x). f...

If `int e^(x).2^(3 log_(2)x) dx = e^(x). `f(x) + C then f(x)=

A

`x^(3) - 3x^(2) +6x- 6 `

B

`x^(3) + 3x^(2) - 6x - 6 `

C

`x^(3) -3x^(2) - 6x + 6 `

D

`x^(3) + 3x^(2) + 6x + 6`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If int e^(x) (x^(2) - 5x+ 8) " dx = " e^(x) f(x) + c then f(x) =

If int e^(sqrt(x)) " dx = K.e"^(sqrt(x)) f(x ) + c then K f(x) =

int e^(x)( log x+(1)/(x^(2)))dx=

int (e^(x))/((2e^(x) -3)^(2)) dx =

int e^(x)((x+2)/(x+3)^(2))dx

If int x^(3) e^(5x)dx=(e^(5x))/(5^4)(f(x))+c , then f(x)=

int e^(x log a) e^(x)dx=

int e^(x)(x^(2)+2x+3)dx=