Home
Class 12
MATHS
int e^(x) (tanx - log cosx ) dx =...

`int e^(x)` (tanx - log cosx ) dx =

A

`e^(x)` log Sec x + c

B

`e^(x)` logtanx +c

C

`e^(x)` tanx + c

D

`e^(x) ` Sec x + c

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int e^(x) (tan x + log sec x ) dx

int e^(cot x + 2" log cosecx") dx =

int e^(2x) (2sinx + cosx) dx =

int e^(-x) (1 - tanx ) Secx dx =

int e^(x) (x+1) log x dx=

int x^(x) ( 1 + log x ) dx =

Evaluate the integerals. int e ^(x) ((1+ x log x)/(x)) dx on (0,oo).

int (log x )^(3) dx =

Evalute the following integrals int e^(x) ((x log x + 1)/(x ) ) dx

Evaluate the integerals. int (tanx+ log sec x) e ^(x) dx on ((2n-(1)/(2))pi, (2n +(1)/(2))pi)n in Z.