Home
Class 12
MATHS
int e^(-x) (1 - tanx ) Secx dx =...

`int e^(-x)` (1 - tanx ) Secx dx =

A

`e^(-x)` Secx+ c

B

`e^(-x)` tanx + c

C

`-e^(-x)` tan x + c

D

`- e^(-x)` Sec x + c

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int e^(x) (tanx - log cosx ) dx =

int e^(x)secx(1+tanx)dx=

Evaluate int e^(-2x) [2 tanx - sec^(2) x]dx

int e^(Sinx).(x Cos x-tanx.Secx)dx=

int e^(-x) cosecx (Cotx + 1) dx =

int sinx .log(Secx + tanx ) dx = f(x) + x + c then f(x) =

int (1-tanx)/(1+tan x)dx=

int e^(x)((1+sin x)/(1+cos x))dx=

int e^(x) [Secx +log (Secx + tan x)] dx =