Home
Class 12
MATHS
int cosx.log (tan""(x)/(2)) dx =...

`int ` cosx.log `(tan""(x)/(2)) ` dx =

A

sinx.logtanx- x + c

B

`-`sinx.log tan`(x)/(2)` + x + c

C

`-`sinx.log tan `(x)/(2)` - x + c

D

sinx.log tan `(x)/(2) ` - x + c

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int ("sec x cos ecx")/(log (tan x)) dx

int (tanx)/(1+tan^(2)x)dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

Evaluate the integerals. int sec x log (sec x + tan x) dx on (0,(pi)/(2)).

If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =

int (1+cosx)/((x+sinx)^(2))dx=

int (x)/(1+cosx)dx=