Home
Class 12
MATHS
int ("logx")^(2) dx =...

`int ("logx")^(2)` dx =

A

`x [ (log x)^(2) -"log x - 2"] + c `

B

`x [ (log x)^(2) -2"log x + 2"] + c `

C

`x [ (log x)^(2) -3"log x - 3"] + c `

D

`x [ (log x)^(2) +"log x - 2"] + c `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

For x gt 0 , if int (log x)^5 dx =x[A (logx)^5+B(logx)^4+C(logx)^3+D(logx)^2+E(logx)+F]+ constant , then A+B+C+D+E+F= .

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

int (tanx-cotx)^(2)dx=

int((1+logx)^(2))/(x)dx

Evaluate the following integrals. int(1)/(x)(logx)^(2)dx

Evaluate : int(logx)/(x)dx .

For x gt 0 , if int(logx)^(5)dx=x(A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D(logx)^(2)+E(logx)+F])+ constant then A+B+C+D+E+F =