Home
Class 12
MATHS
int Cos^(-1)(2x^(2)-1)dx=...

`int Cos^(-1)(2x^(2)-1)dx=`

A

`2(x sin^(-1) x + sqrt(1 - x^(2))) + c `

B

`2 (x cos^(-1) x + sqrt(1 - x^(2))) + c `

C

`2 (x cos^(-1) x -sqrt(1 -x^(2)) )+ c`

D

`2 (x sin^(-1) x - sqrt(1 -x^(2)) )+ c `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int Cos^(-1)x dx

If I_(1)= int Sin^(-1)((2x)/(1+x^(2)))dx,I_(2)= int Cos^(-1)((1-x^(2))/(1+x^(2)))dx, I_(3)= intTan^(-1)((2x)/(1-x^(2)))dx then the value of I_(1)+I_(2)-I_(3)=

int (1)/(x^(2)(x+1))dx=

int (2x+1)/(x^(2)(x+1))dx=

int (cos (Cot^(-1)x))/(1+x^(2))dx=

Evalute the following integrals int cos^(-1) ((1 - x^(2))/(1 +x^(2))) dx

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

int (x +1)/(x^(2) + 1) dx =

int_(1//pi)^(2//pi)(cos(1//x))/(x^(2))dx=