Home
Class 12
MATHS
If I(1) int sin^(-1) ((2x)/(1 +x^(2)) ) ...

If `I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) ` dx ,
`I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) ` dx ,
`I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) ` dx , then `I_(1) + I_(2) - I_(3) ` =

A

`2x tan^(-1) " x- log " ( 1 + x^(2)) + c `

B

`2 [ "xtan"^(-1) x - log (1 + x^(2)) ] + c `

C

`2"xtan"^(-1) "x + log " ( 1 + x^(2)) + c `

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(-1)((2x)/(1-x^(2))) dx

If I_(1)= int Sin^(-1)((2x)/(1+x^(2)))dx,I_(2)= int Cos^(-1)((1-x^(2))/(1+x^(2)))dx, I_(3)= intTan^(-1)((2x)/(1-x^(2)))dx then the value of I_(1)+I_(2)-I_(3)=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

int_(-1)^(1) Sin^(-1) ((x)/(1+x^(2)))dx=

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=

If I_(1) = int_(1)^(2)(dx)/(sqrt(1+x^(2))) and I_(2)= int_(1)^(2) (dx)/(x) then

int_(0)^(1)Tan^(-1)[(2x-1)/(1+x-x^(2))]dx=