Home
Class 12
MATHS
If I(n) = int Sec^(n) x dx then I(8) -...

If `I_(n) = int Sec^(n) x ` dx then ` I_(8) - (6)/(7) I_(6)` =

A

`(Sec^(6) " x tanx")/(7)`

B

`(-Sec^(6) " x tanx")/(7)`

C

`(Sec^(6) " x tanx")/(8)`

D

`(-Sec^(6) " x tanx")/(9)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

For n ge 2 , If I_(n) =int sec^(n) xdx," then "I_(4) -(2)/(3) I_(2) =

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(n) = int cos^(n) x dx , then 6I_(6) -5I_(4) =

If I_(n) = int tan^(n) " x dx then " I_(0) + 2I_(2) + I_(4) =

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

Assertion (A) : If I_(n) = int tan^(n) xdx then 5 (I_(4) + I_(6)) = tan^(5) x Reason (R) : int tan^(n) " xdx then " I_(n) = (tan^(n-1)x)/(n) -I_(n- 2) " where n " in N The correct answer is

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=