Home
Class 12
MATHS
If I(n) = int ("cosnx")/("cosx") dx the...

If `I_(n) = int ("cosnx")/("cosx") ` dx then `I_(n)` =

A

`- (2)/((n- 1)) " cos (n - 1) x" + I_(n - 2) `

B

`(2)/((n- 1)) " cos (n - 1) x" + I_(n - 2) `

C

` (2)/((n- 1)) " sin (n - 1) x" - I_(n - 2) `

D

`- (2)/((n- 1)) " sin (n - 1) x" + I_(n - 2) `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =