Home
Class 12
MATHS
If I(m,n) - int (x^(m) (logx)^(n) dx th...

If `I_(m,n) - int (x^(m) (logx)^(n) ` dx then
`I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) = `

A

`(n)/(m + 1) .I_(m,n-1) `

B

`(m)/(n + 1) .I_(m,n-1) `

C

`-(n)/(m + 1) .I_(m,n-1) `

D

`(n)/(m + 1) .I_(m-1 , n - 1 ) `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

I_(m, n)= int_(0)^(1) x^(m) (ln x)^(n) dx=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(n)= int (e^(ax))dx/(x^(n)) , then I_(n)=

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=