Home
Class 12
MATHS
Statement-I: int sec^(n) " x dx " = (s...

Statement-I:
`int sec^(n) " x dx " = (sec^(n-2) "x tanx")/(n -1) + (n -2)/(n -1) I_(n-2)`
Statement- II :
`int sec^(3) " xdx " = (sec x " " tanx )/(2) + (1)/(2) ` log | sec x - tan x | + k
Which of the following is true ?

A

Only I

B

Only II

C

Both I and II

D

Neither I nor II

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int Sec^(-1)x dx=

int sec^(2) x tan^(2) x dx=

int x sec x tan x dx=

int sec^(2)"cosec"^(2) x dx=

Evaluate int x sec^(-1) x dx

If f_(n)(x)-(tan.(x)/(2))(1+secx)(1+sec 2x)……(1+sec2^(n)x) then which of the following is not true?

If int (sec^(2) x)/(3 + 4 tan x) dx = K log | 3 + 4 tan x | + C then 1/K =

int sqrt(tan x) sec^(2) x dx =

int (sec^(2)x)/(3+4tanx)dx=

Evaluate int e^(-2x) [2 tanx - sec^(2) x]dx