Home
Class 12
MATHS
int(0)^(pi//4)log(1+tanx)dx=...

`int_(0)^(pi//4)log(1+tanx)dx=`

Text Solution

Verified by Experts

The correct Answer is:
`pi/8 log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 2.3 ( VERY SHORT ANSWER QUESTIONS)|23 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 2.3 (SHORT ANSWER QUESTIONS)|7 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 2.2 (SHORT ANSWER QUESTIONS)|10 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log(tanx)dx=

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1 +tan x) dx

Which of the following are false : Statement-I : ( int_(0)^(pi//2) (sqrt(cos x))/(sqrt(cos x + sqrt(sin x)))= pi/2 Statement-II : int_(0)^(pi//2) log(tan x) dx=1 Statement-III: int_(0)^(pi//2) log sin x dx = - pi log 2

int_(0)^(pi//2)log(tanx+cotx)dx=

int_(0)^(pi//2)log(sinx)dx=

int_(0)^(pi//2)sin2xlog(tanx)dx=

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//2)log(cosx)dx=

Evaluate int_(0)^(pi"/"4) log (1 + tan x ) dx .