Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):} sum(r=1)^(n)((r^...

`{:(" "Lt),(n rarr oo):} sum_(r=1)^(n)((r^(3))/(r^(4)+n^(4)))=`

A

log 2

B

`1/2 log 2`

C

`1/3 log 2`

D

`1/4 log 2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

{:(" " Lt),(n rarroo):} sum_(r=1)^(n)(r)/(n^(2)+r^(2))=

{:(" "Lt),(n rarr oo):} {sum_(r=1)^(n)1/n e^(r//n)}=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

{:(" "Lt),(n rarr oo):} 1/n sum_(r=1)^(n)sec^(2).(rpi)/(4n)=

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

{:(" " Lt),(n rarroo):} 1/n sum_(r=1)^(n)sqrt(r/n)=

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Show that {:(" " Lt),( n rarroo):}1/n sum_(r=1)^(n) sec^(2) .(r pi)/(4n)= 4/pi

{:(" "Lt),(n rarr oo):} ((n!)/(n^(n)))^(1/n)=