Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):}1/n sum(r=1)^(2n)...

`{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=`

A

`1+sqrt(5)`

B

`1-sqrt(5)`

C

`sqrt(3)-1`

D

`sqrt(3)+1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

{:(" " Lt),(n rarroo):} 1/n sum_(r=1)^(n)sqrt(r/n)=

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

{:(" " Lt),(n rarroo):} sum_(r=1)^(n)(r)/(n^(2)+r^(2))=

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

{:(" "Lt),(n rarr oo):} {sum_(r=1)^(n)1/n e^(r//n)}=

{:(" "Lt),(n rarr oo):} sum_(r=1)^(n)((r^(3))/(r^(4)+n^(4)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

{:(" "Lt),(n rarr oo):} 1/n sum_(r=1)^(n)sec^(2).(rpi)/(4n)=