Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):}1/n { f(1/n)+f(2/...

`{:(" "Lt),(n rarr oo):}1/n { f(1/n)+f(2/n)+...+f(2)}=`

A

`int_(0)^(1) f(1/x)dx`

B

`int_(0)^(1) f(x)dx`

C

`int_(0)^(1) f(2x)dx`

D

`int_(0)^(2)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

{:(" "Lt),(n rarr oo):} ((n!)/(n^(n)))^(1/n)=

{:(" "Lt),(n rarr oo):}{ (1)/(2n+1)+(1)/(2n+2)+......+(1)/(3n)}=

{:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2))sec^(2). (4)/(n^(2))+...+1/n sec^(2)1]=

{:(" "Lt),(n rarr oo):} 1/n sum_(r=1)^(n)sec^(2).(rpi)/(4n)=

{:(" "Lt),(n rarr oo):} {sum_(r=1)^(n)1/n e^(r//n)}=

{:(" "Lt),(n rarr oo):} 1/n [Sin^(2). (pi)/(2n)+Sin^(2). (2pi)/(2n)+...+Sin^(2). (npi)/(2n)]=

{:(" "Lt),(n rarr oo):} [(1)/(1-n^(2))+(2)/(1-n^(2))+...+(n)/(1-n^(2))]=

{:(" "Lt),(n rarr oo):}(((2n)!)/(n!n^(n)))^(1/n)=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

{:(" "Lt),(n rarr oo):}(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}=