Home
Class 12
MATHS
Lt(ntooo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(s...

`Lt_(ntooo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt((2n-1)))]=`

A

`pi`

B

`2pi`

C

`pi/2`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqrt(n^(2)+n^(2)))}=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+....+(1)/(sqrt(3n^(2))))=

Lt_(ntooo)[(sqrt(n^(2)-1^(2)))/(n^(2))+sqrt(n^(2)-2^(2))/(n^(2))+(sqrt(n^(2)+3^(2)))/(n^(2))+...........+nterms]=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-3^(2)))+....+1/n)=

Lt_(n rarr oo)[(1)/(n)+(1)/(sqrt(n^(2) -1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+... "to n terms"]

Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+(1)/(sqrt(n^(2)+3n))+....(1)/(sqrt(n^(2)+n(n-1)))))=

{:(" "Lt),(n rarr oo):} [(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+(sqrt(n^(2)-3^(2)))/(n^(2)).+....n "terms"]=

Lt_(ntooo){(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+.......+1/(n)}