Home
Class 12
MATHS
int(0)^(oo)(logx)/(1+x^(2))dx=...

`int_(0)^(oo)(logx)/(1+x^(2))dx=`

A

`pi`

B

`2pi`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx is

int_(0)^(1)(x)/(1+x^(2))dx=

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

int_(0)^(oo)(1)/(1+x)^(4)dx=

int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx=

int_(0)^(oo) (dx)/((1+x^(2))^(4))=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

int_(0)^(oo) (x^(3))/((1+x^(2))^(9//2))dx=