Home
Class 12
MATHS
The value of the integral, int(3)^(6)(sq...

The value of the integral, `int_(3)^(6)(sqrtx)/(sqrt(9-x)+sqrtx)dx` is

A

`1//2`

B

`3//2`

C

`3`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)(sqrtx)/(sqrt(5-x)+sqrtx)dx

The value of the integral int_(0)^(3)(dx)/(sqrt(x+1)+sqrt(5x+1)) is

Evaluate the integral int_(4)^(9) (dx)/(sqrt((9-x)(x-4)))

Evaluate the integral int_(3)^(7) sqrt((7-x)/(x-3))dx

Find the value of the integral int_(0)^(2) x^(3//2)sqrt(2-x) dx

Evaluate the integral int_(2)^(6) sqrt((6-x)(x-2))dx

Statement I : The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to (pi)/(6) Statement II : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx