Home
Class 12
MATHS
int(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx=...

`int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx=`

A

`pi/12`

B

`pi/4`

C

`pi/3`

D

`pi/6`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

int_(pi//4)^(3pi//4)(1)/(1+cosx)dx

int_(pi//8)^(3pi//8)(1)/(1+cotx)dx=

int_(pi//4)^(3pi//4) (x)/(1+sin x) dx=

int_(-pi//2)^(pi//2)(cosx)/(1-e^(x))dx=

Evaluate the following integrals (ii) int_(pi/6)^(pi/3)(1)/(1+ root (3)(tan x))dx

int_(pi//6)^(pi//3)(Sin^(3)x)/(Sin^(3)x+Cos^(3)x)dx=

int_(pi//6)^(pi//3)(sin^(3)x)/(sin^(3)x+cos^(3)x)dx=

The integral int_(7pi//4)^(7pi//3) sqrt(tan^(2)x)dx is equal to :