Home
Class 12
MATHS
int(1//e)^(e)|logx|dx=...

`int_(1//e)^(e)|logx|dx=`

A

`1 - 1/e`

B

`1+ 1/e`

C

`2( 1- 1/e)`

D

`(1+ 1/e)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int e^(3logx)dx=

int_(e^(-1))^(e^(2))|(logx)/(x)|dx=

int_(1)^(e)((logx)^(3))/(x)dx=

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

If for n gt 1, P_(n)=int_(1)^(e ) ( logx)^(n)dx , then P_(10)-90P_(8) is equal to:

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(0)^(oo)e^(-xlog2)dx=

int(1)/(e^(x)+e^(-x))dx

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then