Home
Class 12
MATHS
int(0)^(pi//4) tan^(5) x dx=...

`int_(0)^(pi//4) tan^(5) x dx=`

A

`1/2 ln 2 + 1/4`

B

`1/2 ln 2 - 1/4`

C

`1/4 ln 2 - 1/4`

D

`1/2 ln 4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(6) x dx=

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If I_(n)=int_(0)^(pi//4) tan^(n) x dx then {:(" " Lt),(n rarr oo):}n(I_(n)+I_(n+2))=

If I_(n) = int_(0)^(pi//4) Tan^(n) x dx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6)..... are in

If int_(0)^(pi//2) sin^(6) x dx = (pi)/(32) then int_(-pi)^(pi) (sin^(6)x + cos^(6) x)dx=

int_(0)^(pi//3) |tan x - 1|dx=

Find int_(0)^(pi//2) sin^(4)x dx

int_(0)^(pi//4)(tan^(4) x + tan^(2) x ) dx=

Evaluate the integral int_(0)^(pi//2) tan^(5)x cos^(8)x dx