Home
Class 12
MATHS
int(0)^(pi//4)(tan^(4) x + tan^(2) x ) d...

`int_(0)^(pi//4)(tan^(4) x + tan^(2) x ) dx=`

A

1

B

`1/2`

C

`1/3`

D

`1/4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)(tan^(4)x+tan^(3)x)dx=

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi//4) tan^(6) x dx=

A:int_(0)^(pi//4)(tan^(6)x+tan^(4)x)dx=(1)/(5) R:int_(0)^(pi//4)(tan^(n)x+tan^(n-2)x)dx=(1)/(n-1)

int tan^(4) x dx=

Find the values of the following integrals (vi) int_(0)^(pi//2)tan^(2) x cos^(8) x dx

int_(0)^(pi) (x tan x)/( sec x + tan x) dx=

If int_(0)^(pi//2) sin^(4) x cos^(2)x dx = (pi)/(32) then int_(0)^(pi//2) cos^(4) x sin^(2) x dx=