Home
Class 12
MATHS
Statement I : The value of the integral ...

Statement I : The value of the integral `int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx))` is equal to `(pi)/(6)`
Statement II : `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement-1 is true, Statement-2 is false

B

Statement-1 is false, Statement-2 is true

C

Statement-2 is a correct explanation for Statement-1

D

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|23 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

The integral int_(7pi//4)^(7pi//3) sqrt(tan^(2)x)dx is equal to :

Evaluate pi_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

The integral int_((pi)/(4))^((3pi)/(4))(dx)/(1+cosx) is equal to

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx=

int_(r//6)^(pi//4)(dx)/(sin2x)=

Evaluate the integral int_(0)^(pi//4) log(1+tanx)dx

Evaluate the integral int_(0)^(pi) x sin^(3)x dx

int_(-pi//2)^(pi//2)(cosx)/(1-e^(x))dx=