Home
Class 12
MATHS
Lt(ntooo)sum(r=1)^(n)(1)/(sqrt(4n^(2)-r^...

`Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=`

A

`pi`

B

`pi/2`

C

`pi/3`

D

`pi/6`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(ntooo)sum_(r=0)^(n-1)(1)/(n+r)=

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Lt_(ntooo)sum_(r=0)^(n-1)(n)/(n^(2)+r^(2))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r//pi) is

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

Evaluate the limit . Lt_(n to oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

AAKASH SERIES-DEFINITE INTEGRALS-PRACTICE EXERCISE
  1. Lt(ntooo)sum(r=0)^(n-1)(1)/(n+r)=

    Text Solution

    |

  2. Lt(ntooo)sum(r=0)^(n-1)(n)/(n^(2)+r^(2))=

    Text Solution

    |

  3. Lt(ntooo)sum(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

    Text Solution

    |

  4. {:(" " Lt),(n rarroo):} sum(r=1)^(n)(r)/(n^(2)+r^(2))=

    Text Solution

    |

  5. {:(" " Lt),(n rarroo):} 1/n sum(r=1)^(n)sqrt(r/n)=

    Text Solution

    |

  6. {:(" " Lt),(n rarroo):}(1)/(n^(2)) sum(r=1)^(n) r.e^(r//n)=

    Text Solution

    |

  7. Lt(ntooo){(1)/(n+1)+(1)/(n+2)+......+(1)/(2n)}=

    Text Solution

    |

  8. Lt(ntooo){(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(3n)}=

    Text Solution

    |

  9. {:(" " Lt),(n rarroo):}1/n ((1)/(n+1) +(2)/(n+2)......+3/(4n))=

    Text Solution

    |

  10. {:(" " Lt),(n rarroo):} [(1)/(3n+1)+(1)/(3n+2)+.......+(1)/(4n)]=

    Text Solution

    |

  11. Lt(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

    Text Solution

    |

  12. {:(" " Lt),(n rarroo):} ((1+8+27+.......+n^(3))/(n^(4)))=

    Text Solution

    |

  13. Lt(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^(9))/(n^(10))=

    Text Solution

    |

  14. Lt(n rarr oo)[(1^(99)+2^(99)+3^(99)+...+n^(99))/(n^(100))]

    Text Solution

    |

  15. {:(" " Lt),(n rarroo):} [(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+...

    Text Solution

    |

  16. Lt(ntooo)[(1)/(1+n^(2))+(2)/(1+n^(2))+.............+(n)/(1+n^(2))]

    Text Solution

    |

  17. {:(" " Lt),(n rarroo):} pi/n (sin. pi/n + sin. (2pi)/(n)+sin. (3pi)/(...

    Text Solution

    |

  18. {:(" " Lt),(n rarroo):} (pi)/(2n) (1+ cos. (pi)/(2n)+....+cos. ((n-1)...

    Text Solution

    |

  19. Evaluate the following define integrals as limit of sums : lim(n rar...

    Text Solution

    |

  20. Evaluate the limit. underset(n to 00)("lim") (sqrt(n+1)+sqrt(n+2)+…...

    Text Solution

    |