Home
Class 12
MATHS
Lt(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^...

`Lt_(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^(9))/(n^(10))=`

A

`1/2`

B

`1/5`

C

`1/10`

D

`1/15`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lt_(ntooo)(1^(2)+2^(2)+3^(2)+......+n^(2))/n^(3)

Evaluate Lt_(ntooo)(1^(2)+2^(2)+3^(2)+......+n^(2))/n^(3) .

Evaluate the following limits : Lt_(ntooo)(1^(3)+2^(3)+3^(3)+......+n^(3))/(n^(2)(n^(2)+1))

Lt_(ntooo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.......+(n)/(1-n^(2))]=

Lt_(ntooo){(1)/(n+1)+(1)/(n+2)+......+(1)/(2n)}=

Lt_(ntooo)[(1)/(3n+1)+(1)/(3n+2)+............+(1)/(3n+n)]=

Lt_(n to oo) ((1)/(1.5)+(1)/(5.9)+....+(1)/((4n-3)(4n+1)))=

Lt_(ntooo){(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(3n)}=

Lt_(ntooo)[(1)/(1+n^(2))+(2)/(1+n^(2))+.............+(n)/(1+n^(2))]

AAKASH SERIES-DEFINITE INTEGRALS-PRACTICE EXERCISE
  1. Lt(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

    Text Solution

    |

  2. {:(" " Lt),(n rarroo):} ((1+8+27+.......+n^(3))/(n^(4)))=

    Text Solution

    |

  3. Lt(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^(9))/(n^(10))=

    Text Solution

    |

  4. Lt(n rarr oo)[(1^(99)+2^(99)+3^(99)+...+n^(99))/(n^(100))]

    Text Solution

    |

  5. {:(" " Lt),(n rarroo):} [(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+...

    Text Solution

    |

  6. Lt(ntooo)[(1)/(1+n^(2))+(2)/(1+n^(2))+.............+(n)/(1+n^(2))]

    Text Solution

    |

  7. {:(" " Lt),(n rarroo):} pi/n (sin. pi/n + sin. (2pi)/(n)+sin. (3pi)/(...

    Text Solution

    |

  8. {:(" " Lt),(n rarroo):} (pi)/(2n) (1+ cos. (pi)/(2n)+....+cos. ((n-1)...

    Text Solution

    |

  9. Evaluate the following define integrals as limit of sums : lim(n rar...

    Text Solution

    |

  10. Evaluate the limit. underset(n to 00)("lim") (sqrt(n+1)+sqrt(n+2)+…...

    Text Solution

    |

  11. Lt(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqr...

    Text Solution

    |

  12. Evaluate the limit. underset(n to 00)("lim") (sqrt(n+1)+sqrt(n+2)+…...

    Text Solution

    |

  13. Evaluate the following define integrals as limit of sums : lim(n rar...

    Text Solution

    |

  14. int(r//6)^(pi//4)(dx)/(sin2x)=

    Text Solution

    |

  15. int(1//pi)^(2//pi)(sin(1//x))/(x^(2))dx=

    Text Solution

    |

  16. int(0)^(1)(4x^(3))/(sqrt(1-x^(8)))dx=

    Text Solution

    |

  17. int(0)^(1) (1)/(sqrt(2+3x))dx=

    Text Solution

    |

  18. int(0)^(1)(1-x)/(1+x)dx=

    Text Solution

    |

  19. int(0)^(pi//2) (Cos x)/(1+Sin x) dx=

    Text Solution

    |

  20. If f(x)int(0)^(k) (Cos x)/(1+Sin^(2)x)dx= pi/4 then K=

    Text Solution

    |