Home
Class 12
MATHS
Lt(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(...

`Lt_(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqrt(n^(2)+n^(2)))}=`

A

`log (sqrt(2))`

B

`log(1+sqrt(2))`

C

`sqrt(2)`

D

`2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt((2n-1)))]=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+....+(1)/(sqrt(3n^(2))))=

Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(ntooo){(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+.......+1/(n)}

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+(1)/(sqrt(n^(2)+3n))+....(1)/(sqrt(n^(2)+n(n-1)))))=

Lt_(ntooo)[(sqrt(n^(2)-1^(2)))/(n^(2))+sqrt(n^(2)-2^(2))/(n^(2))+(sqrt(n^(2)+3^(2)))/(n^(2))+...........+nterms]=

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=