Home
Class 12
MATHS
The solution of int(sqrt(2))^(x) (dt)/(t...

The solution of `int_(sqrt(2))^(x) (dt)/(tsqrt(t^(2)-1))=pi/12` is

A

4

B

2

C

6

D

`sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

The solution for x of the equation int_(sqrt(2))^(x) (dt)/(|t|sqrt(t^(2)-1))=pi/2 is

The solution for x of the equation int_(sqrt2)^(x)(dt)//t(sqrt(t^(2)-1))=(pi)/(2) is

The number of real solutions of Tan^(-1)sqrt(x(x+1))+Sin^(-1)sqrt(x^(2)+x+1)=pi//2 is

The number of real solutions of Tan^(-1)(sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1))=pi/2 is

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

The number of real solutions of tan^(-1)sqrt(x^(2)+x)+ cosec^(-1)sqrt(1-x^(2)-x)=pi/2 is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is