Home
Class 12
MATHS
int(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(...

`int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6)`, then t=

A

ln 8

B

ln 6

C

ln 4

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

The solution for x of the equation int_(sqrt2)^(x)(dt)//t(sqrt(t^(2)-1))=(pi)/(2) is

int (e^(2x))/(sqrt(e^(x)+1))dx=

If int_(log 2)^(x)(1)/(e^(x)-1)dx = log""(3)/(2) , show that x = log 4

int_(0)^(1) (x^(6))/(sqrt(1-x^(2)))dx=

int_(1)^(e^(3))(dx)/(x sqrt(1+ln x))=

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

Show that int_(0)^(1)(dx)/((1+x^(2))sqrt(2+x^(2))) = (pi)/(6)

The solution for x of the equation int_(sqrt(2))^(x) (dt)/(|t|sqrt(t^(2)-1))=pi/2 is