Home
Class 12
MATHS
int(1)^(3)(1)/(sqrt(x+1)-sqrt(x-1))dx=...

`int_(1)^(3)(1)/(sqrt(x+1)-sqrt(x-1))dx=`

A

`4/3`

B

`5/3`

C

`7/3`

D

`8/3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals (vi) int_(0)^(1) (1)/(sqrt(x+1)+sqrt(x))dx

The value of the integral int_(0)^(3)(dx)/(sqrt(x+1)+sqrt(5x+1)) is

int_(1)^(3) (sqrt(3))/(sqrt(4-x)+sqrt(x))dx=

int_(0)^(1)(dx)/(x+sqrt(x))=

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

int_(1//2)^(1) (1)/(sqrt(x-x^(2)))dx=

int (1)/(sqrt(x))cos (sqrt(x))dx=

int (1)/((x+2)sqrt(x+1))dx=