Home
Class 12
MATHS
int(1)^(2)(e^(x)(1+x log x))/(x) dx=...

`int_(1)^(2)(e^(x)(1+x log x))/(x) dx=`

A

ln 2

B

`e^(2) ln 2`

C

`2 e ln 2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx=

int (1)/(x^(2)) e^((x - 1)/(x)) dx =

int e^(x)( log x+(1)/(x^(2)))dx=

int e^(x) (x+1) log x dx=

int_(0)^(sqrt(e)) x log x dx

Evaluate the integerals. int e ^(x) ((1+ x log x)/(x)) dx on (0,oo).

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=