Home
Class 12
MATHS
int(1)^(e) e^(x)((x-1)/(x^(2)))dx=...

`int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=`

A

`e^(e-1)-e`

B

`e^(e-1)`

C

`e^(e-1)+e`

D

`e`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx=

int (1)/(x^(2)) e^((x - 1)/(x)) dx =

int(x^(e-1)+e^(x-1))/(x^(e)+e^(x))dx=

int (e^(x)(x^(2)+1))/((1+x)^(2))dx=

int (1)/((e^(x) - e^(-x))^(2)) dx =

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int e^(x) (x -1)/((x + 2)^(4)) dx =

int e^(x)( log x+(1)/(x^(2)))dx=

int e^(x){(1-x)/(1+x^(2))}^2dx=

int_(1)^(e)(ln x)/(x^(2))dx=