Home
Class 12
MATHS
If f(x) = int(0)^(x) t.e^(t) dt then f'(...

If `f(x) = int_(0)^(x) t.e^(t) dt` then `f'(-1)=`

A

e

B

`1/e`

C

`- 1/e`

D

`-e`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If k int_(0)^(1) x f (3 x) dx = int_(0)^(3) t f(t) dt then k=

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If g(x) = int_(0)^(x) cos 4(t) dt , then g(x+pi) equals

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

If f(x)=int_(x)^(x+1) e^(-t^(2)) dt , then the interval in which f(x) is decreasing is

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=