Home
Class 12
MATHS
(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0...

`(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0`. If `int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1)`, then one of the possible values of K is :

A

4

B

-4

C

16

D

8

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

int_(0)^(2pi)(1)/(e^(sin x) +1) dx=

int ((1+x)e^(x))/(sin^(2)(x e^(x)))dx=

int_(0)^(pi//2) e^(x)((1+sin x)/(1+cos x))dx=

If int e^(x)(2+sin 2x)sec^(2)xdx=f(x)+c then f(x)=

If f(x) int_(0)^(k) (Cos x)/(1+Sin^(2)x)dx= pi/4 then K=

int e^(x)((1+sin x)/(1+cos x))dx=

If int e^(x).2^(3 log_(2)x) dx = e^(x). f(x) + C then f(x)=

If (d)/(dx) f(x) = g(x) then int_(a)^(b) f(x) g(x) dx=