Home
Class 12
MATHS
int(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=...

`int_(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=`

A

`(pi)/(2n)`

B

`(pi)/(4n)`

C

`(pi)/(8n)`

D

`pi/n`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2)) (1)/(1 + cot x)dx

int_(0)^(pi//2) (dx)/(1 + sin^(2)x)=

int_(0)^(1)x(1-x)^(n)dx=

int_(0)^(pi)(1)/(1+sinx)dx=

int_(0)^(pi) (dx)/(1+2 sin^(2)x)=

int_(0)^(pi//2)(1)/(1+sqrt(cotx))dx=

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)

For n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=

int_(0)^((pi)/(2)) (3 tan x + 4 cot x)/(tan x + cot x)dx