Home
Class 12
MATHS
int(0)^(oo) (x)/((1+x)(1+x^(2)))dx=...

`int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx=`

A

`pi/4`

B

`pi`

C

`pi/2`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo) (dx)/((1+x^(2))^(4))=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

Show that int_(0)^(oo) (dx)/((x+sqrt(1+x^(2)))^(n))=(n)/(n^(2)-1), (n in N, n gt 1)

If int_(0)^(oo)(x^(2)dx)/((x^(2)+a^(2))(x^(2)+b^(2))(x^(2)+c^(2)))=(pi)/(2(a+b)(b+c)(c+a))" then "int_(0)^(oo)(dx)/((x^(2)+4)(x^(2)+9))=

If int_(0)^(oo)(dx)/((x^(2)+4)(x^(2)+9))=kpi then the value of k is

int_(0)^(oo)(1)/(1+x)^(4)dx=

int_(0)^(oo) (dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(oo)(logx)/(1+x^(2))dx=

The value of the integral int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx is