Home
Class 12
MATHS
int(0)^(oo)e^(-xlog2)dx=...

`int_(0)^(oo)e^(-xlog2)dx=`

A

ln 2

B

`(1)/(ln 2)`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2)," then " int_(0)^(oo)e^(-ax^(2))dx,agt0 is

Evaluate int_(0)^(oo)[2e^(-x)]dx

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(1) x e^(-x^(2))dx

int_(0)^(1000)e^(x-[x])dx=

int_(0)^(oo)[(2)/(e^(x))]dx=

Prove that int_(0)^(oo) e^(-2x)(sin 2x + cos 2 x) dx = (1)/(2)

The value of the integral int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx is

int_(0)^(oo)(logx)/(1+x^(2))dx=